
SCALABLE COORDINATED EXPLORATION IN
CONCURRENT REINFORCEMENT LEARNING

MARIA DIMAKOPOULOU, IAN OSBAND, BENJAMIN VAN ROY

MOTIVATION
We consider a team of reinforcement learning agents that
concurrently learn to operate in a common environment,
such as a farm of robots learning how to carry out a task.

Google Brain robot farm.

A larger number of robots can gather and share larger vol-
umes of data that enable each one to learn faster. The bene-
fits to scale are most dramatic if the robots explore the envi-
ronment in a coordinated fashion.

COORDINATED EXPLORATION
Efficient coordination among agents greatly accelerates learn-
ing. There are three necessary properties:
Adaptivity: Adapt as data becomes available to make effec-
tive use of new information.
Commitment: Maintain the intent to carry out action se-
quences that span multiple periods.
Diversity: Divide-and-conquer learning opportunities.

CONTRIBUTION
We propose generalized seed sampling for concurrent rein-
forcement learning that:
1. satisfies the three necessary properties for efficient coordi-

nated exploration, adaptivity, commitment, diversity.

2. admits complex generalization based on randomized
value functions to address practical problems that typ-
ically pose enormous state spaces.

PROBLEM FORMULATION
• K agents that operate in parallel in identical environments

and collaborate to achieve a common goal.

• Agents share data with one another in real time and have
access to a common buffer D with (s,a,r,s′) observations.

• Agents generalize across enormous state space S and ac-
tion space Awith feature representation Φ:S×A→Rd.

• Each agent k uses state-action value function Qk(θ):S×
A→R parameterized by θ (e.g., neural network with input
Φ(s,a) and weights θ).

• Agents have prior beliefs over the parameter θ, such as the
expectation, θ̄, or the level of uncertainty, λ, on θ.

• Agents update their state-action value functions in real-
time based on all observations made by their peers.

GENERALIZED SEED SAMPLING
Generalized seed sampling offers a framework for design-
ing scalable and efficient coordinated exploration algorithms
in concurrent reinforcement learning.

Lemma 1. Consider the data (X,y)=
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where yj=θ
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is a sample

from the posterior of θ∗ given (X,y).

Each agent fits a model to a randomly perturbed prior and
randomly perturbed observations to generate approximate
posterior samples of the state action value function ('
Thompson sampling). The seed that each agent samples
at the beginning provides the source of randomness.

• The independent seeds help diversify the exploratory ef-
fort among agents.

• The fact that the agent maintains a fixed seed throughout
learning leads to a sufficient degree of commitment.

• At each time period, agent k obtains an approximate pos-
terior sample θk for the model parameters and uses state-
action value function Qk(θk) (Lemma 1). Hence, the agent
adapts in real-time to new, high-dimensional information.

SEED LEAST SQUARES VALUE ITERATION

Seeds of agent k: zk,j∼N (0,v) and θ̂k∼N (θ̄,λI).
Before each action, agent k performs LSVI:
θ̃H←0
for h=H−1,H−2,...,0

θ̃h←argminθ
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θk←θ̃0

SEED TEMPORAL DIFFERENCING

Seeds of agent k: zk,j∼N (0,v) and θ̂k∼N (θ̄,λI).
Before each action, agent k performs GD on minibatch J ∈D:

L(θ)← 1
v

∑
j∈J
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θk←θk−α∇θL(θk)

SANITY CHECKS
We use the “Parallel Chains” & “Bipolar Chain” toy domains.
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Parallel chains example.
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Bipolar chain example.

We compare tabular seed sampling, concurrent UCRL,
Thompson resampling, seed LSVI and seed TD. Seed LSVI
and seed TD use linear representation of the state-action
value function with one-hot encoded features.

1. Parallel Chains: Tabular seed sampling, seed LSVI, seed
TD (independent seeds) and Thompson resampling (inde-
pendent MDPs) diversify. Concurrent UCRL makes the
agents gather the same data.

Performance of algorithms in the parallel chains problem.

2. Bipolar Chain: Seed sampling, seed LSVI, seed TD (fixed
seed) and concurrent UCRL (optimism) commit to explore
the endpoints of the chain. Thompson resampling makes
the agents dither.

Performance of algorithms in the bipolar chain problem.

Seed sampling algorithms with generalization adapt, di-
versify and commit. Even with a completely uninfor-
mative prior, they perform as well as the very informed
tabular seed sampling designed for tabular settings.

SEED BOOTSTRAP
Rather than adding explicit noise to the target values, train
models (with LSVI/TD) on bootstrap samples. The seed
of agent k is θ̂k∼N (θ̄,λI) and zk,j∼Bernoulli specifying if
observation j will be used by agent k throughout learning.

SEED POLICY GRADIENT
Seeding principles apply for policy function approximation.
Each agent k defines a policy function π̃k(s,a,θ) and before
an action, it uses the buffer of observations D and its reward
perturbation seeds zk∼N (0,v) to perform policy gradient.

SEED ENSEMBLE
When the number of parallel agents is large, instead of hav-
ing each one of the K agents fit a separate model (e.g. K
separate neural networks), we can have a smaller ensemble
of E models to decrease computational cost. Each model e is
initialized with θ̂e∼N (θ̄,λ) and trained on the buffer D with
reward perturbations ze,j∼N (0,v). The seed of agent k is a
randomly drawn index of a model from the ensemble.

CARTPOLE: SWING-UP & CENTER
Multiple robots are given their own cart-pole to play with
for 30 seconds.
Goal: learn to swing-up and balance the pole upright while
centering the cart – the only rewarding state.

• Due to the curse of dimensionality, tabular approaches are
intractable with multiple continuous state variables.
• Due to the highly sparse reward structure, deep and coor-

dinated exploration is necessary.
• Only generalized seed sampling scales in intractable

state spaces and achieves coordinated exploration.

Generalized seed sampling and DQN ε-greedy after 30 seconds of learning.

As the number of parallel agents grows, generalized seed
sampling is able crack complex tasks very quickly.

DQN ε-greedy (00:30 seconds)

Generalized seed sampling (00:30 seconds)

DEMOS

A team of mice explore a maze
for a large round of cheese.

Generalized seed sampling in
‘cart-pole: swing-up and center’.


